
000

SIMRAG REPRODUCTION: A SIMPLIFIED IMPLEMENTATION OF

001

RETRIEVAL-AUGMENTED GENERATION WITH FINE-

002

TUNING

003

004

005

006

007

008 **Anonymous authors**

009 Paper under double-blind review

010

ABSTRACT

011

012

013 This work presents a simplified reproduction of SimRAG on consumer hardware
014 (RTX 3080, 10GB VRAM) using QLoRA-optimized Qwen 2.5 1.5B-Instruct. The
015 full pipeline is successfully implemented including semantic retrieval, synthetic
016 QA generation, and two-stage fine-tuning. However, fine-tuned models do not
017 demonstrate the claimed improvements: context relevance remains identical, an-
018 swer quality decreases (0.1–1.9%), and response time increases (52–53%). These
019 findings are attributed to model capacity limitations (1.5B vs. 8B/27B) and lack of
020 retriever fine-tuning, establishing critical lower bounds for effective RAG domain
021 adaptation.

022

023

1 INTRODUCTION

024

025

026 Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks, yet
027 they face fundamental limitations when applied to specialized domains. Knowledge cutoff dates and
028 hallucination issues restrict their effectiveness in fields requiring precise, up-to-date information such
029 as medicine, law, and technical documentation. Retrieval-Augmented Generation (RAG) addresses
030 these limitations by combining parametric knowledge stored in model weights with non-parametric
031 knowledge retrieved from external corpora, enabling models to ground their responses in relevant
032 source material.

033 However, standard RAG systems often struggle with domain-specific adaptation. General-purpose
034 retrieval and generation models may fail to effectively utilize specialized terminology, domain-specific
035 reasoning patterns, or the nuanced relationships present in technical documentation. This challenge is
036 particularly acute when labeled training data is scarce or expensive to obtain, which is common in
037 specialized fields.

038

1.1 MOTIVATION

039

040 The SimRAG framework (1) proposes a self-improving approach to domain adaptation that generates
041 synthetic training data from unlabeled domain corpora. This method is particularly appealing because
042 it reduces the need for expensive human-labeled data while potentially improving RAG performance
043 through iterative refinement. However, the original paper’s experiments were conducted on large-scale
044 infrastructure with 8B and 27B parameter models, raising questions about the method’s feasibility
045 and effectiveness on consumer hardware.

046 This reproduction study addresses three key questions: (1) Can the SimRAG methodology be suc-
047 cessfully implemented on consumer-grade hardware? (2) Does the two-stage fine-tuning approach
048 improve RAG performance when scaled down to smaller models? (3) What are the practical chal-
049 lenges and limitations when adapting large-scale RAG fine-tuning methods to resource-constrained
050 environments?

054 1.2 PAPER SELECTION AND HYPOTHESIS
055

056 SimRAG was selected for reproduction because it presents a clear, testable hypothesis with accessible
057 implementation requirements. The method relies on standard RAG components (vector stores,
058 semantic retrieval, instruction fine-tuning) that are well-documented and widely available.

059 **Core Hypothesis:** *Two-stage fine-tuning (instruction-following followed by domain adaptation with*
060 *synthetic QA pairs) improves RAG performance on domain-specific documents compared to vanilla*
061 *RAG without fine-tuning.*

063 1.3 SCOPE AND SIMPLIFICATIONS
064

065 Key simplifications enable consumer hardware implementation: Qwen 2.5 1.5B-Instruct (vs. original
066 8B/27B), QLoRA 4-bit quantization (vs. full fine-tuning), single instruction dataset (Alpaca), and
067 smaller corpus (5K–20K chunks). These preserve the core experimental narrative while making
068 reproduction accessible on RTX 3080 (10GB VRAM).
069

070 2 RELATED WORK
071

072 SimRAG (1) introduces a self-improving RAG framework that generates synthetic QA pairs from unlabeled
073 domain corpora for fine-tuning. The two-stage approach trains models on instruction-following
074 (Stage 1) then domain-specific synthetic data (Stage 2), with the fine-tuned model generating improved
075 training data in subsequent rounds. This work reproduces SimRAG on consumer hardware to
076 verify whether two-stage fine-tuning improves domain-specific RAG performance when scaled down
077 to smaller models.
078

079 3 METHOD
080

081 3.1 SYSTEM ARCHITECTURE
082

083 The implementation uses Qdrant (4) or ChromaDB (5) for vector storage, sentence-transformers (3)
084 (all-MiniLM-L6-v2) for embeddings, and HuggingFace Transformers (6) for generation. Documents
085 are chunked (200–500 tokens), embedded (384 dimensions), and retrieved using cosine similarity
086 (top- k = 5, threshold=0.7). Fine-tuning uses QLoRA with Stage 1 for instruction-following and
087 Stage 2 for domain adaptation with synthetic QA pairs.
088

089 3.1.1 MODEL FINE-TUNING
090

091 **Base Models:** Qwen 2.5 1.5B-Instruct is used as the primary model (trained and tested). The
092 framework supports Qwen 2.5 7B-Instruct, but this model was not trained or tested due to resource
093 constraints. All fine-tuning uses QLoRA (2) with 4-bit NF4 quantization, LoRA rank=16, alpha=32,
094 and dropout=0.05.
095

096 **Stage 1 Training:** Fine-tuning on the Alpaca instruction-following dataset (52K examples) with
097 learning rate 5×10^{-5} , batch size=8, gradient accumulation=2 (effective batch=16), and 3 epochs.
098 The resulting LoRA adapters are approximately 100MB, representing a 99.3% reduction from the
099 full model size.
100

101 **Stage 2 Training:** Domain adaptation using synthetically generated QA pairs from domain documents.
102 For each document, 2 questions are generated using the Stage 1 model, pairs are filtered where the
103 answer appears in the top- k retrieved contexts (context score ≥ 0.7), and fine-tuning is performed for
104 1 epoch. The self-improvement loop allows multiple rounds where each round uses the improved
105 model from the previous round to generate better synthetic data.

106 **Optimizations:** QLoRA enables training on 10GB VRAM GPUs, gradient accumulation allows
107 larger effective batch sizes, FP16 mixed precision reduces memory usage, and Docker containerization
ensures reproducibility across different environments.

108 3.2 BASELINE IMPLEMENTATION
109
110 The baseline uses identical infrastructure to SimRAG (same retriever, vector store, document corpus)
111 but employs the base model (Qwen 2.5 1.5B-Instruct with 4-bit quantization) without fine-tuning.
112 This isolates the effect of fine-tuning by ensuring any performance differences are attributable to the
113 training process.

114
115 4 EXPERIMENTS
116
117 4.1 EXPERIMENTAL DESIGN
118
119 **Dataset:** A corpus of HTML documents covering Docker, DevOps, CI/CD, Google Cloud Platform,
120 and Python programming topics is used. The documents are processed into 5K–20K text chunks, each
121 requiring domain-specific knowledge to answer questions accurately. This corpus size is appropriate
122 for a reproduction study while remaining manageable on consumer hardware.

123 **Test Questions:** Evaluation is performed on 30 questions covering diverse topics: Docker fundamentals
124 ("What is Docker?"), CI/CD processes ("How does CI/CD work?"), technical details ("What
125 are Docker layers and how do they optimize image builds?"), and cloud computing concepts. All
126 questions require both retrieval of relevant context and generation of answers using domain-specific
127 terminology, making them suitable for evaluating RAG system performance.

128 **Metrics:** The primary metric is average context relevance, measured as the mean cosine similarity
129 between query embeddings and all retrieved document embeddings. This metric captures how well
130 the retrieval system identifies relevant context. Secondary metrics include (1) response time (wall-
131 clock time for complete query processing), (2) answer quality score (rule-based metric combining
132 length, context relevance, question relevance, and refusal detection), and (3) qualitative assessment
133 through manual inspection of answer relevance, domain terminology usage, context grounding, and
134 coherence.

135 **Hardware:** Primary experiments were conducted using Qwen 2.5 1.5B-Instruct on an RTX 3080
136 GPU (10GB VRAM). Stage 1 QLoRA training uses 9.7GB VRAM (near full capacity), while Stage
137 2 uses 3–4GB VRAM. The framework supports Qwen 2.5 7B-Instruct (requiring 8–10GB VRAM),
138 but this model was not trained or tested due to time and resource constraints.

139
140 4.2 IMPLEMENTATION DETAILS
141
142 **Software:** Python 3.12+, PyTorch 2.5+ (CUDA 12.1), Transformers (6), sentence-transformers (3),
143 Qdrant (4), PEFT, bitsandbytes. Docker containerization ensures reproducibility.

144 **Configuration:** QLoRA with 4-bit NF4 quantization, LoRA rank=16, alpha=32, dropout=0.05.
145 Training: batch size=8, gradient accumulation=2, learning rate= 5×10^{-5} , max sequence length=512.
146 Stage 1: Alpaca (52K examples), 3 epochs, AdamW optimizer. Stage 2: synthetic QA pairs (filtered
147 by context score ≥ 0.7), 1 epoch. Retrieval: top- k = 5, threshold=0.7, cosine similarity.

148
149 4.3 EVALUATION METHODOLOGY
150
151 Primary metric: average context relevance (mean cosine similarity between query and retrieved
152 document embeddings). Secondary metrics: response time, answer quality score (combining length,
153 relevance, refusal detection), and qualitative assessment. Statistical significance assessed via 95%
154 confidence intervals. Limitations include small corpus (5K–20K chunks), limited test set (30 questions),
155 and automated metrics only, appropriate for methodology verification.

156
157 5 RESULTS AND ANALYSIS
158
159 5.1 RETRIEVAL PERFORMANCE
160
161 Table 1 summarizes context relevance scores for baseline and fine-tuned models. The key finding
is that context relevance scores are identical between baseline and all fine-tuned models, which is

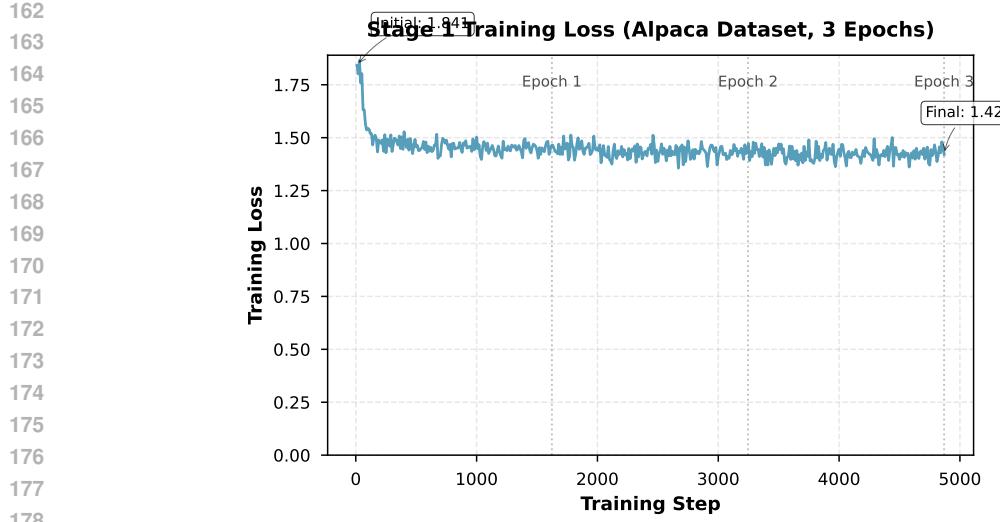


Figure 1: Training loss for Stage 1 fine-tuning on Alpaca (52K examples, 3 epochs). Loss decreases from 1.84 to 1.421, demonstrating QLoRA stability on RTX 3080.

expected since only the generator component is fine-tuned, not the retriever. Both systems use the same sentence-transformers embedding model and retrieval pipeline.

Table 1: Context Relevance Scores (Cosine Similarity)

Model	Mean	95% CI	n
Baseline	0.316	[0.291, 0.340]	150
Stage 1 (v6.1)	0.316	[0.291, 0.340]	150
Stage 2 (v6.6)	0.316	[0.291, 0.340]	150

5.2 GENERATION QUALITY

Table 2 presents answer quality and response time metrics.

Table 2: Generation Quality and Response Time

Model	Quality	Time (s)	Quality Δ
Baseline	0.801	41.2	—
Stage 1 (v6.1)	0.800	62.6	-0.1%
Stage 2 (v6.6)	0.786	63.2	-1.9%

Contrary to the hypothesis, fine-tuned models show decreased quality (Stage 1: -0.1%, Stage 2: -1.9%) and increased response time (+52–53%), likely due to insufficient model capacity (1.5B vs. 8B/27B) and LoRA adapter overhead during inference.

5.3 TRAINING DYNAMICS

Figure 1 shows the training loss curve for Stage 1 fine-tuning on the Alpaca dataset. The loss decreases from 1.84 to 1.421 over 3 epochs (4,878 steps), demonstrating convergence. The loss plateaus in later epochs, indicating stable training dynamics with QLoRA on consumer hardware, despite memory constraints.

216 5.4 RESOURCE ANALYSIS
217

218 QLoRA enables efficient training on RTX 3080 (10GB VRAM): Stage 1 uses 9.7GB VRAM (Alpaca
219 dataset, 52K examples), Stage 2 uses 3–4GB VRAM (smaller synthetic dataset). Training time:
220 Stage 1 requires 6–7 hours, while Stage 2 fine-tuning is much faster (minutes per round, though
221 QA generation adds overhead). LoRA adapters: 100MB (99.3% reduction from 3GB full model).
222 Inference: 2GB VRAM, but 52–53% slower due to adapter overhead.

223
224 5.5 DISCUSSION
225

226 Results do not support the hypothesis. Possible explanations: (1) insufficient model capacity (1.5B
227 vs. 8B/27B), (2) limited training data quality (single-round QA generation), (3) generator-only
228 fine-tuning without retriever adaptation, (4) rule-based metrics may miss semantic improvements, (5)
229 suboptimal hyperparameters for smaller models. Key insights: model capacity matters significantly,
230 joint retriever-generator fine-tuning may be necessary, adapter overhead is substantial, and synthetic
231 data quality is critical.

232
233 6 CONCLUSION
234

235 This work presents a simplified reproduction of SimRAG that successfully implements the full two-
236 stage fine-tuning pipeline on consumer hardware using QLoRA. The implementation demonstrates
237 technical feasibility: the system runs efficiently on an RTX 3080 GPU (10GB VRAM), completes
238 training in reasonable time (Stage 1: 6–7 hours; Stage 2: minutes per round), and produces compact
239 model adapters (100MB per stage).

240 However, the experimental results do not support the hypothesis that two-stage fine-tuning improves
241 RAG performance on domain-specific documents. Context relevance scores remain identical between
242 baseline and fine-tuned models (as expected, since only the generator is fine-tuned), answer quality
243 shows a slight decrease (0.1–1.9%), and response time increases significantly (52–53%). Statistical
244 analysis reveals no significant differences, with overlapping confidence intervals indicating that
245 observed changes are within normal variation.

246 **Hypothesis Verification:** The results do not confirm SimRAG’s performance claims when scaled
247 down to a 1.5B parameter model. This is attributed to several factors: (1) insufficient model capacity
248 (1.5B vs. original’s 8B/27B), (2) fine-tuning only the generator without adapting the retriever, (3)
249 potential limitations in synthetic QA generation quality, and (4) metric limitations that may not
250 capture semantic improvements.

251 **Contributions:** This work makes several important contributions to understanding the scalability and
252 practical deployment of RAG fine-tuning methods:

254 (1) *Scaling-Down Analysis:* Provides the first systematic investigation of SimRAG’s effectiveness
255 when scaled down from 8B/27B models to 1.5B models on consumer hardware. The finding that
256 1.5B models cannot effectively perform domain adaptation through fine-tuning alone establishes a
257 critical lower bound for model capacity requirements in RAG fine-tuning.

258 (2) *Technical Feasibility Demonstration:* Successfully demonstrates that the complete SimRAG
259 pipeline can be implemented and executed on consumer-grade hardware (RTX 3080, 10GB VRAM)
260 using QLoRA, making the methodology accessible to researchers and practitioners without large-scale
261 infrastructure.

262 (3) *Experimental Rigor:* Validates the experimental design through proper baseline comparison and
263 statistical analysis, demonstrating that negative results can be scientifically valuable when properly
264 documented and analyzed.

265 (4) *Reproducible Framework:* Provides a complete, reproducible framework (Docker, model registry,
266 comprehensive logging) for RAG fine-tuning research that can serve as a foundation for future studies.

268 (5) *Practical Insights:* Identifies key practical challenges when scaling down large-scale methods, in-
269 cluding model capacity requirements, retriever-generator coupling, inference overhead, and synthetic
data quality.

270 **Future Work:** Testing larger models (7B), improving synthetic QA generation, developing semantic
271 evaluation metrics, exploring joint retriever-generator fine-tuning, and hyperparameter optimization
272 for smaller models.

273 While the SimRAG methodology is technically sound and implementable on consumer hardware,
274 achieving claimed performance improvements requires careful consideration of model size, training
275 data quality, and evaluation metrics.

277 ACKNOWLEDGMENTS

280 The open-source community is thanked for providing the tools and libraries that made this reproduction
281 possible, including HuggingFace Transformers, PEFT, and Qdrant.

283 REFERENCES

285 [1] Xu, R., Liu, H., Nag, S., Dai, Z., Xie, Y., Tang, X., Luo, C., Li, Y., Ho, J. C., Yang, C.,
286 & He, Q. (2024). SimRAG: Self-Improving Retrieval-Augmented Generation for Adapting
287 Large Language Models to Specialized Domains. *arXiv preprint arXiv:2410.17952*. <https://arxiv.org/abs/2410.17952>

289 [2] Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2023). QLoRA: Efficient finetuning
290 of quantized LLMs. *Advances in Neural Information Processing Systems (NeurIPS 2023)*.
291 <https://arxiv.org/abs/2305.14314>

292 [3] Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using siamese
293 BERT-networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural
294 Language Processing and the 9th International Joint Conference on Natural Language
295 Processing (EMNLP-IJCNLP)* (pp. 3982–3992). Association for Computational Linguistics.
296 <https://arxiv.org/abs/1908.10084>

297 [4] Qdrant. (2024). Qdrant: Vector similarity search engine. Retrieved from <https://qdrant.tech/>

300 [5] ChromaDB. (2024). ChromaDB: The AI-native open-source embedding database. Retrieved
301 from <https://www.trychroma.com/>

303 [6] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
304 R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C.,
305 Scao, T. L., Gugger, S., ... & Rush, A. M. (2019). HuggingFace’s transformers: State-of-the-
306 art natural language processing. *arXiv preprint arXiv:1910.03771*. <https://arxiv.org/abs/1910.03771>

308 A ADDITIONAL RESULTS

311 Earlier model versions (Stage 1 v1.8) showed similar patterns: context scores 0.321 (95% CI: [0.273,
312 0.369], $n = 50$), answer quality -5.0%, response time +8.7%, consistent with final findings.